
Parallelware Tool
Workshop

Learning parallelization of real applications
from the ground-up

Manuel Arenaz | October 17, 2019

©Appentra Solutions S.L.

October 17, 2019 | ©Appentra Solutions S.L.

Agenda

2

8:15 - 8:45
8:45 - 9:00
9:00 - 9:30

9:30 - 10:15

10:15 - 10:30

10:30 - 11:00
11:00 - 11:30
11:30 - 12:00

12:00 - 13:00

13:00 - 14:00
14:00 - 17:00

17:00 pm

Morning refreshment and coffee
Welcome and introductions
Lecture 1: An introduction to OpenMP/OpenACC optimizations for CPUs/GPUs
Lecture 2: Patterns to minimize data transfers, optimize memory usage and exploit massive parallelism

Break

Lecture 3: Minimizing data transfers
Lecture 4: Optimizing memory usage
Lecture 5: Exploiting massive parallelism

Working lunch (hands-on activities)

Practical 5A: Parallelizing the calculation of HEAT
Hands-on time with your code
Close

October 17, 2019 | ©Appentra Solutions S.L.

Use cases: Performance optimization on CPU/GPU

3

Use case #1: Minimizing data transfers
● Code patterns: flow patterns (eg. convergence loop)
● On GPUs: Transfer data from CPU to GPU and reuse it!
● On CPUs: Create threads and reuse them!

Use case #2: Optimizing memory usage
● Code patterns: memory patterns (eg. data structure design)
● On GPUs: Watch your data structure design as it may break your code!
● On CPUs: Hardware keeps memory consistency, so focus mostly on locality!

Use case #3: Exploiting massive parallelism
● Code patterns: computation patterns (eg. collapsible nested loops)
● On GPUs: Scale-up to thousands of threads!
● On CPUs: Limited number of threads, so not so important as on GPUs!

October 17, 2019 | ©Appentra Solutions S.L.

Why using flow patterns?

4

1: Flow patterns provide a deeper understanding of the reuse of data during the execution of
the parallel code

○ Typically, scientific and engineering codes perform simulations over time where many program

inputs are read-only data that does not change at run-time. In GPU programming it is

recommended to transfer such data to GPU memory only once at the beginning of the program.

2: Flow patterns enable to the detection of loops that cannot be parallelized
○ Time-step loops that dictate the progress in time during the execution of the code cannot be

parallelized because, given an initial state of a variable, such variable is updated in each time-step

using as inputs the values computed in the previous iteration(s). Thus, all the threads either on the

CPU or on the GPU must go through all the time-steps and synch at the beginning/end of each

time-step iteration.

October 17, 2019 | ©Appentra Solutions S.L.

Flow
Patterns

5

for(iter=0, err = tol; err >= tol && iter < iter_max; iter++){
 ...
}

convergence
loop

for(iter=0; iter < iter_max; iter++){
 ...
}

propagation
loop

October 17, 2019 | ©Appentra Solutions S.L.

Convergence loop

Understanding the sequential code

● A time-step loop which stops when a fixed maximum number of loop iterations is achieved or when
the value of a numerical error metric is less than a fixed threshold.

● At a given step of a convergence loop, the numerical error is computed by combining the solution in
the current loop iteration with the solution in previous iterations (typically 1-2 previous iterations).

● As a result, the convergence loop cannot be parallelized because there are dependencies between
consecutive loop iterations.

6

C:
int iter = 0; double err;
for(iter=0, err = tol; err >= tol && iter < iter_max; iter++){
 // compute new solution A_iter using as input A_previous_iter
 // compute numerical error between A_iter and A_previous_iter
 // Copy contents of A_iter into A_previous_iter to prepare for next iteration
}

Fortran:
integer iter = 0
real err = 0
do while (iter < iter_max .and. err > tol)
 // compute new solution A_iter using as input A_previous_iter
 // compute numerical error between A_iter and A_previous_iter
 // Copy contents of A_iter into A_previous_iter to prepare for next iteration
end do

October 17, 2019 | ©Appentra Solutions S.L.

Propagation loop

Understanding the sequential code

7

C:
int iter = 0;
for(iter=0; iter < iter_max; iter++){
 // compute new solution A_iter using as input A_previous_iter
 // Copy contents of A_iter into A_previous_iter to prepare for next iteration
}

Fortran:
integer iter = 0
do while (iter < iter_max)
 // compute new solution A_iter using as input A_previous_iter
 // Copy contents of A_iter into A_previous_iter to prepare for next iteration
end do

● A simplified version of convergence loops also typically iterates until a maximum number of
iterations is achieved.

● Although no numerical error threshold is checked, the solution in the current loop iteration is
computed using the solution in previous iterations (typically 1-2 previous iterations).

● As a result, a propagation loop cannot be parallelized because there are dependencies between
consecutive loop iterations.

Parallelizing the calculation of
HEAT on the GPU with
OpenMP/OpenACC

8

Walkthrough:

● Using Parallelware Trainer in function compute():
○ Generate two separate data directives for two consecutive loops.
○ Generate one single data directive that covers two consecutive loops.
○ Open the solution with one joined data directive with array shapes.

● Using Parallelware trainer in function cfd_heat_diffusion():
○ Open the solution with one single data directive that covers the convergence loop.

